Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 871
Filtrar
1.
Protein J ; 43(1): 12-23, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37932619

RESUMO

Eis (Enhanced intracellular survival) protein is an aminoglycoside acetyltransferase enzyme classified under the family - GNAT (GCN5-related family of N-acetyltransferases) secreted by Mycobacterium tuberculosis (Mtb). The enzymatic activity of Eis results in the acetylation of kanamycin, thereby impairing the drug's action. In this study, we expressed and purified recombinant Eis (rEis) to determine the enzymatic activity of Eis and its potential inhibitor. Glide-enhanced precision docking was used to perform molecular docking with chosen ligands. Quercetin was found to interact Eis with a maximum binding affinity of -8.379 kcal/mol as compared to other ligands. Quercetin shows a specific interaction between the positively charged amino acid arginine in Eis and the aromatic ring of quercetin through π-cation interaction. Further, the effect of rEis was studied on the antibiotic activity of kanamycin A in the presence and absence of quercetin. It was observed that the activity of rEis aminoglycoside acetyltransferase decreased with increasing quercetin concentration. The results from the disk diffusion assay confirmed that increasing the concentration of quercetin inhibits the rEis protein activity. In conclusion, quercetin may act as a potential Eis inhibitor.


Assuntos
Aminoglicosídeos , Mycobacterium tuberculosis , Aminoglicosídeos/química , Aminoglicosídeos/metabolismo , Aminoglicosídeos/farmacologia , Quercetina/farmacologia , Quercetina/metabolismo , Proteínas de Bactérias/química , Simulação de Acoplamento Molecular , Antibacterianos/farmacologia , Canamicina/farmacologia , Canamicina/química , Canamicina/metabolismo , Acetiltransferases/genética , Acetiltransferases/química , Inibidores Enzimáticos/química
2.
Curr Microbiol ; 81(1): 5, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37950074

RESUMO

LanK is a TetR type regulatory protein that coordinates the late steps of the biosynthesis of the landomycin family of antitumor angucyclic polyketides and their export from the cells of Streptomyces cyanogenus S136. We recently described the structure of LanK and showed that it is the carbohydrate portion of the landomycins that is responsible for abrogating the repressing effect of LanK on landomycin production and export. The effect has been established in a series of in vitro tests using synthetic analogs of the landomycin carbohydrate chains. Whether such synthetic compounds would function as effector molecules for LanK under in vivo conditions remained unknown. Furthermore, the location and identity of LanK operator sites within the lanK-lanJ intergenic region (lanKJp) was unknown. Here we report that methoxyphenyl analogs of tri- and hexasaccharide chains of landomycins cannot function as LanK ligands when applied externally to the reporter strain. The lability of these compounds to cellular media and/or their poor penetration into the cells could explain our observations. The LanK operator site has been mapped to a 14-bp region of lanKJp that includes a plausible -35 site upstream of the lanK start codon in a series of electrophoretic DNA mobility shift assays. This opens the door to studies of the DNA-LanK interaction at a single nucleotide resolution level.


Assuntos
Aminoglicosídeos , Fatores de Transcrição , Aminoglicosídeos/química , Fatores de Transcrição/genética , DNA
3.
Org Lett ; 25(43): 7832-7835, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37870307

RESUMO

The nikkomycins Sz/Soz are a class of locked nucleoside antibiotics that share a common [5,6] trans-bicyclic core. Herein we present an efficient synthesis of these nikkomycins from diene, using neighboring group participation N-glycosylation and stereoselective oxidation state installation. This synthetic strategy overcomes several challenges due to the poor redox tolerance of the uracil base, the high strain of the trans-fused furanopyran C8 monosaccharides, and the acid-sensitive glycosidic bond when dealing with the deoxynucleotide natural product nikkomycin Sz.


Assuntos
Aminoglicosídeos , Antibacterianos , Aminoglicosídeos/química , Antibacterianos/farmacologia , Antibacterianos/química , Uracila
4.
Microbiol Spectr ; 11(3): e0062023, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37039640

RESUMO

Aminoglycoside-modifying enzymes are among the most important mechanisms of resistance to aminoglycoside antibiotics, typically conferring high-level resistance by enzymatic drug inactivation. Previously, we isolated a multidrug-resistant Brucella intermedia strain ZJ499 from a cancer patient, and whole-genome sequencing revealed several putative novel aminoglycoside-modifying enzyme genes in this strain. Here, we report the characterization of one of them that encodes an intrinsic, chromosomal aminoglycoside nucleotidyltransferase designated ANT(9)-Ic, which shares only 33.05% to 47.44% amino acid identity with the most closely related ANT(9)-I enzymes. When expressed in Escherichia coli, ANT(9)-Ic conferred resistance only to spectinomycin and not to any other aminoglycosides tested, indicating a substrate profile typical of ANT(9)-I enzymes. Consistent with this, deletion of ant(9)-Ic in ZJ499 resulted in a specific and significant decrease in MIC of spectinomycin. Furthermore, the purified ANT(9)-Ic protein showed stringent substrate specificity for spectinomycin with a Km value of 44.83 µM and a kcat/Km of 2.8 × 104 M-1 s-1, echoing the above observations of susceptibility testing. In addition, comparative genomic analysis revealed that the genetic context of ant(9)-Ic was conserved in Brucella, with no mobile genetic elements found within its 20-kb surrounding region. Overall, our results demonstrate that ANT(9)-Ic is a novel member of the ANT(9)-I lineage, contributing to the intrinsic spectinomycin resistance of ZJ499. IMPORTANCE The emergence, evolution, and worldwide spread of antibiotic resistance present a significant global public health crisis. For aminoglycoside antibiotics, enzymatic drug modification is the most common mechanism of resistance. We identify a novel chromosomal aminoglycoside nucleotidyltransferase from B. intermedia, called ANT(9)-Ic, which shares the highest identity (47.44%) with the previously known ANT(9)-Ia and plays an important role in spectinomycin resistance of the host strain. Analysis of the genetic environment and origin of ant(9)-Ic shows that the gene and its surrounding region are widely conserved in Brucella, and no mobile elements are detected, indicating that ANT(9)-Ic may be broadly important in the natural resistance to spectinomycin of Brucella species.


Assuntos
Aminoglicosídeos , Nucleotidiltransferases , Aminoglicosídeos/farmacologia , Aminoglicosídeos/química , Aminoglicosídeos/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Espectinomicina , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Resistência Microbiana a Medicamentos , Escherichia coli/metabolismo , Farmacorresistência Bacteriana/genética
5.
BMC Genomics ; 24(1): 120, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36927548

RESUMO

BACKGROUND: The aminoglycosides are established antibiotics that inhibit bacterial protein synthesis by binding to ribosomal RNA. Additional non-antibiotic aminoglycoside cellular functions have also been identified through aminoglycoside interactions with cellular RNAs. The full extent, however, of genome-wide aminoglycoside RNA interactions in Escherichia coli has not been determined. Here, we report genome-wide identification and verification of the aminoglycoside Kanamycin B binding to Escherichia coli RNAs. Immobilized Kanamycin B beads in pull-down assays were used for transcriptome-profiling analysis (RNA-seq). RESULTS: Over two hundred Kanamycin B binding RNAs were identified. Functional classification analysis of the RNA sequence related genes revealed a wide range of cellular functions. Small RNA fragments (ncRNA, tRNA and rRNA) or small mRNA was used to verify the binding with Kanamycin B in vitro. Kanamycin B and ibsC mRNA was analysed by chemical probing. CONCLUSIONS: The results will provide biochemical evidence and understanding of potential extra-antibiotic cellular functions of aminoglycosides in Escherichia coli.


Assuntos
Escherichia coli , RNA , RNA/química , Escherichia coli/genética , Escherichia coli/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Aminoglicosídeos/química , Aminoglicosídeos/metabolismo , Aminoglicosídeos/farmacologia , RNA Ribossômico/química , RNA Mensageiro/genética
6.
Proc Natl Acad Sci U S A ; 120(12): e2217254120, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36917671

RESUMO

The potentiation of antibiotics is a promising strategy for combatting antibiotic-resistant/tolerant bacteria. Herein, we report that a 5-min sublethal heat shock enhances the bactericidal actions of aminoglycoside antibiotics by six orders of magnitude against both exponential- and stationary-phase Escherichia coli. This combined treatment also effectively kills various E. coli persisters, E. coli clinical isolates, and numerous gram-negative but not gram-positive bacteria and enables aminoglycosides at 5% of minimum inhibitory concentrations to eradicate multidrug-resistant pathogens Acinetobacter baumannii and Klebsiella pneumoniae. Mechanistically, the potentiation is achieved comprehensively by heat shock-enhanced proton motive force that thus promotes the bacterial uptake of aminoglycosides, as well as by increasing irreversible protein aggregation and reactive oxygen species that further augment the downstream lethality of aminoglycosides. Consistently, protonophores, chemical chaperones, antioxidants, and anaerobic culturing abolish heat shock-enhanced aminoglycoside lethality. We also demonstrate as a proof of concept that infrared irradiation- or photothermal nanosphere-induced thermal treatments potentiate aminoglycoside killing of Pseudomonas aeruginosa in a mouse acute skin wound model. Our study advances the understanding of the mechanism of actions of aminoglycosides and demonstrates a high potential for thermal ablation in curing bacterial infections when combined with aminoglycosides.


Assuntos
Aminoglicosídeos , Antibacterianos , Camundongos , Animais , Antibacterianos/farmacologia , Antibacterianos/química , Aminoglicosídeos/farmacologia , Aminoglicosídeos/química , Espécies Reativas de Oxigênio/farmacologia , Agregados Proteicos , Escherichia coli , Bactérias Gram-Negativas , Bactérias , Resposta ao Choque Térmico , Testes de Sensibilidade Microbiana
7.
ACS Infect Dis ; 9(4): 801-814, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-36961435

RESUMO

Improving the efficacy of existing antibiotics is significant for combatting antibiotic resistance that poses a major threat to human health. Carbonyl cyanide m-chlorophenylhydrazine (CCCP), a well-known protonophore for dissipating proton motive force (PMF), has been widely used to block the PMF-dependent uptake of aminoglycoside antibiotics and thus suppress aminoglycoside lethality. Here, we report that CCCP and its functional analog FCCP, but not other types of protonophores, unprecedently potentiate aminoglycosides (e.g., tobramycin and gentamicin) by 3-4 orders of magnitude killing of Escherichia coli, Staphylococcus aureus, Shigella flexneri, and Vibrio alginolyticus cells in stationary phase but not these cells in exponential phase nor other 12 bacterial species we examined. Overall, the effect of CCCP on aminoglycoside lethality undergoes a gradual transition from suppression against E. coli exponential-phase cells to potentiation against late stationary-phase cells, with the cell growth status and culture medium being crucial. Consistently, disturbance of the PMF by changing transmembrane proton gradient (ΔpH) or electric potential (ΔΨ) also potentiates tobramycin. Nevertheless, CCCP neither increases the intracellular concentration of tobramycin nor decreases the MIC of the antibiotic, thus excluding that CCCP acts as an efflux pump inhibitor to potentiate aminoglycosides. Rather, we show that the combined treatment dramatically enhances the cellular level of hydroxyl radical under both aerobic and anaerobic culturing conditions, under which the antioxidant N-acetyl cysteine fully suppresses both hydroxyl radical accumulation and cell death. Together, these findings open a new avenue to develop certain protonophores as aminoglycoside adjuvants against pathogens in stationary phase and also illustrate an essential role of hydroxyl radical in aminoglycoside lethality regardless of aerobic respiration.


Assuntos
Aminoglicosídeos , Escherichia coli , Humanos , Aminoglicosídeos/farmacologia , Aminoglicosídeos/química , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Radical Hidroxila/farmacologia , Antibacterianos/farmacologia , Tobramicina/farmacologia
8.
Protein Pept Lett ; 30(1): 92-101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36281865

RESUMO

BACKGROUND: The body needs to maintain a firm balance between the inducers and inhibitors of angiogenesis, the process of proliferation of blood vessels from pre-existing ones. Human angiogenin (hAng), being a potent inducer of angiogenesis, is a cause of tumor cell proliferation, therefore its inhibition becomes a vital area of research. Aminoglycosides are linked ring systems consisting of amino sugars and an aminocyclitol ring and are in use in clinical practices for a long time. These compounds have found clinical uses as antibacterial agents that inhibit bacterial protein synthesis. OBJECTIVE: Gentamycin C1, Kanamycin A, Neomycin B, Paromomycin I, and Streptomycin A are commonly used aminoglycoside antibiotics that have been used for the present study. Among these, Neomycin has reported inhibitory activity against angiogenin-induced angiogenesis on the chicken chorioallantoic membrane. This study focuses on the thermodynamic parameters involved in the interactions of these antibiotics with hAng. METHODS: Agarose gel-based assay, Fluorescence quenching studies and Docking studies. RESULTS: Anti-ribonucleolytic effect of the antibiotics was observed qualitatively using an agarose gelbased assay, which shows that Neomycin exhibits the most efficient inhibition of hAng. Fluorescence quenching studies at different temperatures, using Stern-Volmer and van't Hoff equations provide information about the thermodynamics of binding, which furthermore highlights the higher binding constant of Neomycin. Docking studies showed that the antibiotics preferably interact with the nuclear translocation site, except Streptomycin, which shows affinity towards the ribonucleolytic site of the protein with very less affinity value. CONCLUSION: The study has shown the highly spontaneous formation of Neomycin-hAng complex, giving an exothermic reaction with increase in the degree of freedom of the protein-ligand complex.


Assuntos
Aminoglicosídeos , Antibacterianos , Humanos , Aminoglicosídeos/farmacologia , Aminoglicosídeos/química , Antibacterianos/química , Neomicina/farmacologia , Neomicina/metabolismo , Sefarose , Estreptomicina , Termodinâmica
9.
Angew Chem Int Ed Engl ; 62(3): e202213810, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36411245

RESUMO

Herein, bioinspired total syntheses of A201A, A201D, and A201E based on a previously reported biosynthetic pathway are presented. The challenging 1,2-cis-furanoside, a core structure of the A201 family, was obtained by remote 2-quinolinecarbonyl-assisted glycosylation. We accomplished the total synthesis of A201A and A201E based on the critical 1,2-cis-furanoside moiety through late-stage glycosylation without any interference from basic dimethyl adenosine. We also confirmed the absolute configuration of A201E by total synthesis. This modular synthesis strategy enables efficient preparation of A201 family antibiotics, allowing the study of their structure-activity relationships and mode of action. This study satisfies the increasing demand for developing novel antibiotics inspired by the A201 family.


Assuntos
Antibacterianos , Nucleosídeos , Aminoglicosídeos/química , Glicosilação
10.
ChemMedChem ; 18(1): e202200497, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36259357

RESUMO

Aminoglycosides (AGs) are broad-spectrum antibiotics used to treat bacterial infections. Over the last two decades, studies have reported the potential of AGs in the treatment of genetic disorders caused by nonsense mutations, owing to their ability to induce the ribosomes to read through these mutations and produce a full-length protein. However, the principal limitation in the clinical application of AGs arises from their high toxicity, including nephrotoxicity and ototoxicity. In this study, five novel pseudo-trisaccharide analogs were synthesized by chemo-enzymatic synthesis by acid hydrolysis of commercially available AGs, followed by an enzymatic reaction using recombinant substrate-flexible KanM2 glycosyltransferase. The relationships between their structures and biological activities, including the antibacterial, nephrotoxic, and nonsense readthrough inducer (NRI) activities, were investigated. The absence of 1-N-acylation, 3',4'-dideoxygenation, and post-glycosyl transfer modifications on the third sugar moiety of AGs diminishes their antibacterial activities. The 3',4'-dihydroxy and 6'-hydroxy moieties regulate the in vitro nephrotoxicity of AGs in mammalian cell lines. The 3',4'-dihydroxy and 6'-methyl scaffolds are indispensable for the ex vivo NRI activity of AGs. Based on the alleviated in vitro antibacterial properties and nephrotoxicity, and the highest ex vivo NRI activity among the five compounds, a kanamycin analog (6'-methyl-3''-deamino-3''-hydroxykanamycin C) was selected as a novel AG hit for further studies on human genetic disorders caused by premature transcriptional termination.


Assuntos
Códon sem Sentido , Trissacarídeos , Animais , Humanos , Aminoglicosídeos/farmacologia , Aminoglicosídeos/química , Aminoglicosídeos/uso terapêutico , Antibacterianos/química , Inibidores da Síntese de Proteínas/farmacologia , Mamíferos/genética
11.
ACS Chem Biol ; 17(12): 3478-3488, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36453647

RESUMO

To extend the approach of using RNA aptamers as transient protective groups for the synthesis of novel small-molecule drug derivatives from the existing aminoglycosides, we incorporated 2'-5' phosphodiester backbone modification in a structurally known neomycin RNA aptamer and studied the binding of a series of aminoglycosides using isothermal calorimetry (ITC) and molecular dynamics (MD) simulation. Experimental characterization of amikacin, a commercially available and widely used aminoglycoside for treating bacterial infections, shows that the aptamer A1 with a 2'-5' linkage between G15 and U16 exhibits a sevenfold increase in binding affinity with a lower binding energy compared to the native aptamer. Molecular dynamics (MD) simulation studies rationalize that this noncanonical linkage generates a narrower binding pocket by creating a superspiral RNA helical structure, which improves the ligand's fit in the binding pocket. These results provide new insights into applying 2'-5' linkages to diversify functional RNA aptamers as noncovalent protective groups in the synthesis of aminoglycoside derivatives, which can be further extended to other current drug molecules and complex natural compounds to make new pools of drug candidates more efficiently.


Assuntos
Aptâmeros de Nucleotídeos , Aptâmeros de Nucleotídeos/química , Simulação de Dinâmica Molecular , Amicacina , Aminoglicosídeos/química , Antibacterianos/química
12.
Molecules ; 27(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36364310

RESUMO

Chemical modification of old drugs is an important way to obtain new ones, and it has been widely used in developing new aminoglycoside antibiotics. However, many of the previous modifying strategies seem arbitrary for their lack of support from structural biological detail. In this paper, based on the structural information of aminoglycoside and its drug target, we firstly analyzed the reason that some 2'-N-acetylated products of aminoglycosides caused by aminoglycoside-modifying enzyme AAC(2') can partially retain activity, and then we designed, synthesized, and evaluated a series of 2'-modified kanamycin A derivatives. Bioassay results showed our modifying strategy was feasible. Our study provided valuable structure-activity relationship information, which would help researchers to develop new aminoglycoside antibiotics more effectively.


Assuntos
Aminoglicosídeos , Canamicina , Canamicina/farmacologia , Canamicina/química , Aminoglicosídeos/química , Antibacterianos/química , Relação Estrutura-Atividade , Bioensaio , Acetiltransferases
13.
Chin J Nat Med ; 20(11): 854-862, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36427919

RESUMO

For the purpose of seeking new antibiotics, researchers usually modify the already-existing ones. However, this strategy has been extensively used and is close to its limits, especially in the case of aminoglycosides, and it is difficult to find a proper aminoglycoside antibiotic for novel modification. In this paper, we reported the design, synthesis, and evaluation of a series of 5-epi-neamine derivatives based on the structural information of bacterial 16S RNA A-site binding with aminoglycosides. Bioassay results showed that our design strategy was feasible. Our study offers a new way to search for structurally novel aminoglycosides. Meanwhile, our study provides valuable structure-activity relationship information, which will lead to better understanding and exploitation of the drug target, and improved development of new aminoglycoside antibiotics.


Assuntos
Aminoglicosídeos , Antibacterianos , Aminoglicosídeos/farmacologia , Aminoglicosídeos/química , Antibacterianos/química , RNA Ribossômico 16S/metabolismo , Relação Estrutura-Atividade , Bioensaio
14.
Antimicrob Agents Chemother ; 66(12): e0099222, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36346250

RESUMO

Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium that causes nosocomial infections in immunocompromised patients. ß-lactam and aminoglycoside antibiotics are commonly used in the treatment of P. aeruginosa infections. Previously, we found that mutation in a PA4292 gene increases bacterial resistance to ß-lactam antibiotics. In this study, we demonstrated that mutation in PA4292 increases bacterial susceptibility to aminoglycoside antibiotics. We further found enhanced uptake of tobramycin by the ΔPA4292 mutant, which might be due to an increase of proton motive force (PMF). Sequence analysis revealed PA4292 is homologous to the Escherichia coli phosphate transporter PitA. Mutation of PA4292 indeed reduces intracellular phosphate concentration. We thus named PA4292 as pitA. Although the PMF is enhanced in the ΔpitA mutant, the intracellular ATP concentration is lower than that in the isogenic wild-type strain PA14, which might be due to lack of the ATP synthesis substrate phosphate. Overexpression of the phosphate transporter complex genes pstSCAB in the ΔpitA mutant restores the intracellular phosphate concentration, PMF, ATP synthesis, and aminoglycosides resistance. In addition, growth of wild-type PA14 in a low-phosphate medium resulted in higher PMF and aminoglycoside susceptibility compared to cells grown in a high-phosphate medium. Overall, our results demonstrate the roles of PitA in phosphate transportation and reveal the relationship between intracellular phosphate and aminoglycoside susceptibility.


Assuntos
Força Próton-Motriz , Pseudomonas aeruginosa , Trifosfato de Adenosina , Aminoglicosídeos/farmacologia , Aminoglicosídeos/química , Antibacterianos/farmacologia , beta-Lactamas , Escherichia coli/genética , Proteínas de Transporte de Fosfato , Fosfatos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
15.
Bioorg Med Chem ; 73: 117011, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36191548

RESUMO

The total synthesis of capuramycin (1), which is a promising anti-tubercular antibiotics, has been accomplished using Ferrier-type I reaction as a key step. This total synthesis is an alternative approach to the synthesis of capuramycin and its analogues. The 3'-O-demethyl analogue (2), which exhibits an equivalent antibacterial activity as capuramycin (1) against Mycobacterium smegmatis and Mycobacterium avium, is suggested to have potential as a lead structure of capuramycin analogues because 2 is more accessible from a synthetic view point.


Assuntos
Aminoglicosídeos , Mycobacterium smegmatis , Aminoglicosídeos/química , Antibacterianos/química , Relação Estrutura-Atividade
16.
PLoS One ; 17(8): e0269684, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35921328

RESUMO

Canonical aminoglycosides are a large group of antibiotics, where the part of chemical diversity stems from the substitution of the neamine ring system on positions 5 and 6. Certain aminoglycoside modifying enzymes can modify a broad range of 4,5- and 4,6-disubstituted aminoglycosides, with some as many as 15. This study presents the structural and kinetic results describing a promiscuous aminoglycoside acetyltransferase AAC(3)-IIIa. This enzyme has been crystallized in ternary complex with coenzyme A and 4,5- and 4,6-disubstituted aminoglycosides. We have followed up this work with kinetic characterization utilizing a panel of diverse aminoglycosides, including a next-generation aminoglycoside, plazomicin. Lastly, we observed an alternative binding mode of gentamicin in the aminoglycoside binding site, which was proven to be a crystallographic artifact based on mutagenesis.


Assuntos
Acetiltransferases , Aminoglicosídeos , Acetiltransferases/metabolismo , Aminoglicosídeos/química , Antibacterianos/química , Especificidade por Substrato
17.
Bioelectrochemistry ; 147: 108193, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35753199

RESUMO

Herein, we reported the differential binding ability of aminoglycosides to DNA structures using electrochemical method through principal component analysis (PCA) to classify different DNA secondary structures and understand the link between secondary structure and DNA conformation. In these analyses, the DNA with different secondary structure motifs: bulge, internal loop, hairpin loop and stem loop were designed. The aminoglycosides as receptors were modified on the surface of electrode. In the presence of DNA, the DNA will be absorbed on the surface of electrode via the recognition of DNA and aminoglycosides, resulting in the electrochemical signal observed in [Fe(CN)6]3-/4-. Furthermore, the DNA structures labeled with 2-aminopurine (2-AP) at the structural motif of interest were also employed to study the binding affinity between aminoglycosides and different DNA motifs. The PCA suggested that this method may achieve nucleotide-specific classification of two independent secondary structure motifs, and the structure and sequence of DNA and the size and structure of small molecule could affect the binding ability of the aminoglycosides and DNA. This approach presents a new approach to classify DNA structure and offers ideas for designing targeted drugs small molecule compounds for wound dressing and drug delivery.


Assuntos
Aminoglicosídeos , DNA , Aminoglicosídeos/química , Aminoglicosídeos/metabolismo , Antibacterianos/metabolismo , DNA/análise , Técnicas Eletroquímicas , Conformação de Ácido Nucleico
18.
Sci Rep ; 12(1): 7302, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508636

RESUMO

A clinically relevant inhibitor for Heptosyltransferase I (HepI) has been sought after for many years because of its critical role in the biosynthesis of lipopolysaccharides on bacterial cell surfaces. While many labs have discovered or designed novel small molecule inhibitors, these compounds lacked the bioavailability and potency necessary for therapeutic use. Extensive characterization of the HepI protein has provided valuable insight into the dynamic motions necessary for catalysis that could be targeted for inhibition. Structural inspection of Kdo2-lipid A suggested aminoglycoside antibiotics as potential inhibitors for HepI. Multiple aminoglycosides have been experimentally validated to be first-in-class nanomolar inhibitors of HepI, with the best inhibitor demonstrating a Ki of 600 ± 90 nM. Detailed kinetic analyses were performed to determine the mechanism of inhibition while circular dichroism spectroscopy, intrinsic tryptophan fluorescence, docking, and molecular dynamics simulations were used to corroborate kinetic experimental findings. While aminoglycosides have long been described as potent antibiotics targeting bacterial ribosomes' protein synthesis leading to disruption of the stability of bacterial cell membranes, more recently researchers have shown that they only modestly impact protein production. Our research suggests an alternative and novel mechanism of action of aminoglycosides in the inhibition of HepI, which directly leads to modification of LPS production in vivo. This finding could change our understanding of how aminoglycoside antibiotics function, with interruption of LPS biosynthesis being an additional and important mechanism of aminoglycoside action. Further research to discern the microbiological impact of aminoglycosides on cells is warranted, as inhibition of the ribosome may not be the sole and primary mechanism of action. The inhibition of HepI by aminoglycosides may dramatically alter strategies to modify the structure of aminoglycosides to improve the efficacy in fighting bacterial infections.


Assuntos
Aminoglicosídeos , Lipopolissacarídeos , Aminoglicosídeos/química , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Glicosiltransferases/metabolismo , Lipopolissacarídeos/farmacologia
19.
Bioorg Chem ; 126: 105824, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35636122

RESUMO

Despite their clinical importance, saving numerous human lifes, over- and mis-uses of antibiotics have created a strong selective pressure on bacteria, which induces the emergence of (multi)resistant strains. Antibioresistance is becoming so pregnant that since 2017, WHO lists bacteria threatening most human health (AWaRe, ESKAPE lists), and those for which new antibiotics are urgently needed. Since the century turn, this context is leading to a burst in the chemical synthesis of new antibiotics, mostly derived from natural antibiotics. Among them, aminoglycosides, and especially the neomycin family, exhibit broad spectrum of activity and remain clinically useful drugs. Therefore, numerous endeavours have been undertaken to modify aminoglycosides with the aim of overcoming bacterial resistances. After having replaced antibiotic discovery into an historical perspective, briefly surveyed the aminoglycoside mode of action and the associated resistance mechanisms, this review emphasized the chemical syntheses performed on the neomycin family and the corresponding structure activity relationships in order to reveal the really efficient modifications able to convert neomycin and its analogues into future drugs. This review would help researchers to strategically design novel aminoglycoside derivatives for the development of clinically viable drug candidates.


Assuntos
Infecções Bacterianas , Neomicina , Aminoglicosídeos/química , Aminoglicosídeos/farmacologia , Antibacterianos/química , Bactérias , Humanos , Neomicina/química , Neomicina/farmacologia , Paromomicina/química , Paromomicina/farmacologia
20.
FEBS J ; 289(19): 6038-6057, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35429224

RESUMO

Landomycin A (LaA) is the largest member of the landomycin group of angucyclic polyketides. Its unusual structure and strong anticancer properties have attracted great interest from chemists and biologists alike. This, in particular, has led to a detailed picture of LaA biosynthesis in Streptomyces cyanogenus S136, the only known LaA producer. LanK is a TetR family repressor protein that limits the export of landomycins from S136 cells until significant amounts of the final product, LaA, have accumulated. Landomycins carrying three or more carbohydrate units in their glycosidic chain are effector molecules for LanK. Yet, the exact mechanism that LanK uses to distinguish the final product, LaA, from intermediate landomycins and sense accumulation of LaA was not known. Here, we report crystal structures of LanK, alone and in complex with LaA, and bioassays of LanK's interaction with synthetic carbohydrate chains of LaA (hexasaccharide) and LaE (trisaccharide). Our data collectively suggest that the carbohydrate moieties are the sole determinants of the interaction of the landomycins with LanK, triggering the latter's dissociation from the lanK-lanJ intergenic region via structure conversion of the helices in the C-terminal ligand-binding domain. Analysis of the available literature suggests that LanK represents an unprecedented type of TetR family repressor that recognises the carbohydrate portion of a natural product, and not an aglycon, as it is the case, for example, with the SimR repressor involved in simocyclinone biosynthesis.


Assuntos
Produtos Biológicos , Policetídeos , Aminoglicosídeos/química , DNA Intergênico , Ligantes , Trissacarídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...